US 6,195,345 B1

23

This extended cluster 23 is described in greater detail
below, following a background description of FIG. 4.

FIG. 4 shows a multiple cluster system 30 in which the
back-end 31 includes MXE 1, MXE 2, . . . MXE15, MXE16,
communicating with a central MXE 32. Central MXE 32
then communicates with redundant front-ends 33, which
communicate with LNX controllers (LNX1 and LNX2),
which communicate to the real network channels 14 as
described previously with respect to FIG. 1.

For this extended configuration, it should be possible to
have the single central node sitting inbetween two (or
possibly more) front-ends and an array of back-ends. Using
present technology, sixteen back-end machines could yield
a combined subscriber capacity of, for example, 800,000,
where the central node would be necessary to reduce the
number of signaling links to the back-end, and for managing
the subscriber lookup-tables.

The ability to expand a single cluster is limited by 1) the
ability to configure additional channels (both real and
virtual), and 2) the load capacity of the front end machine.
Beyond those limitations, the present invention contem-
plates multiple clustering.

The following describes what is believed to be the most
practical and efficient means for expanding into a double-
cluster or other multiple-cluster arrangement. A second level
of clustering begins by first setting up a duplicate of the
single cluster that has already been described.

Once in place, the two independent clusters can be
“meshed” such that each front-end machine, instead of being
connected to three back-end machines, will now be con-
nected to all six back-end machines. Each back-end machine
will, however, only have 60 channels (for example) going to
each front-end machine (rather than 120 available (for
example) in stand-alone or single cluster mode). That is, the
number of channels for each signaling link is reduced from
120 to 60, but the same traffic load is maintained as there are
now two circuit switching controllers, one to each front end
machine. Thus, each back-end machine will still have 120
channels, because a second LNX controller is added, thus
permitting 60 channels coming from each front-end to each
of these back-end controllers.

One might expect this to limit the system to only 60
channels. However, to begin with, this is unlikely because
the network will distribute the traffic evenly when it selects
a route to the MXE, and the channels will, therefore, be
distributed evenly between the two front-end machines.
There is, however, the possibility still that all channels from
one front-end to a given back-end are occupied, while nearly
all channels from the other front-end are available.

To handle this, the network channels for each front-end
machine are divided into two LNX channel groups. Now the
second group of channels for each cluster will be for the
LNX on the other cluster as there are now two LNXs, each
having two CPU boards. These CPU boards include the
ability to be able to switchover to a standby LNX matrix.
That is, the software that controls the LNX is designed, such
that if a second LNX matrix board is configured, and if either
the active board becomes faulty or the control link is
disconnected, the MXE will detect this failure and begin to
use the standby system. So two links are available, where the
second link is going to the standby matrix on the other LNX.

FIG. 14 illustrates an example of this embodiment. The
two LNX’s are shown (one for each front end). Each LNX
has an active board and a standby board. The active board is
linked to the corresponding front end. That is, the first front
end associated with the first LNX are linked together. The
front end receives the active board link from the correspond-

10

15

20

25

30

35

40

45

50

55

60

65

24

ing LNX at the LNX software module of the front end. A
redundant module is also included in each front end to
receive a redundant pair. This pair includes a link from the
standby board of the opposite LNX and a link from the VLLX
module of the opposite front end. Thus, each front end
receives three cables: 1) from the single active LNX board
on the corresponding LNX, 2) from the redundant standby
LNX board on the opposite LNX, and 3) from the VLX
module of the opposite front end.

Ordinarily, the standby board of each LNX carries no
traffic. Thus, each front end receives traffic from the active
link of its corresponding LNX and from the VLX module of
its opposite front end. But, if one of the front ends crashes,
the virtual link will die with it and the standby board will
then take over. In the end, the LNX ahead of the crashed
front end can still control traffic simultaneously with the
other LNX to the one operating front end. One LNX will
feed the operational front end via its active link to the LNX
software module at the front end and the other LNX will
feed the front end via its standby link to the redundant LNX
software module at the front end.

When the system is configured for redundancy, each of
the two controllers has two links. Once redundancy con-
figurations are imposed, the first controller has one link
remaining, while the second controller has two links. This
second link of the second controller is connected to a port on
the other front-end machine that has a VL.X module gener-
ating LNX signals. Then, to be able to switch calls to the
second front-end machine, in order to avoid the condition
described above where all channels on one side are
occupied, a set of VLX channels is simply configured to do
S0.

Next, the selected MMI must be guaranteed to be physi-
cally connected to the LNX that the call came in on. By
configuring the MMI channels such that they have an
appropriate hunt group, that is, a hunt group that corre-
sponds to the LNX that the MMI channel is physically
connected to, and by hasing the front-end service, for
example, add a prefix to the address information that gets
sent to the back-end, then the service running on the
back-end can select an MMI such that it will always be
connected to the correct LNX. In effect this is a communi-
cation scheme to allow the front-end to tell the back-end
which LNX the call has come in on.

The description above with respect to FIG. 4 includes an
example of how a “three-tier” configuration could be created
that would allow for such a large-scale cluster. There is,
however, a short-coming with that model, namely, that the
“central” node would not have the thread capacity to handle
the required number of calls (the current MXE software uses
a thread for each channel, as well as a thread for each call).
And it is also questionable as to whether a single node would
be able to handle the required call rate, i.e., whether a single
call could afford to go through two intermediary service
nodes. One solution, therefore, would be to create a central
node that, instead of running a service, would simply do a
circuit translation and route the call-processing message. If
we describe the service-driven front-end machine as a
circuit-switching node, then we could describe the central
machine as being a form of packet-switching node.

This solution also opens up the possibility for having a
remote connection from a front-end machine to the central
node, called the circuit switch access node (CSA) of FIG. 3.
This would typically be a leased line, i.e., X.25, going from
one site where a telephony network exchange and a front-
end MXE would co-reside, going to another site where the
central node and the array of back-end MXE’s would
co-reside.



